Hybrid particle swarm optimization and tabu search approach for selecting genes for tumor classification using gene expression data

نویسندگان

  • Qi Shen
  • Wei-Min Shi
  • Wei Kong
چکیده

Gene expression data are characterized by thousands even tens of thousands of measured genes on only a few tissue samples. This can lead either to possible overfitting and dimensional curse or even to a complete failure in analysis of microarray data. Gene selection is an important component for gene expression-based tumor classification systems. In this paper, we develop a hybrid particle swarm optimization (PSO) and tabu search (HPSOTS) approach for gene selection for tumor classification. The incorporation of tabu search (TS) as a local improvement procedure enables the algorithm HPSOTS to overleap local optima and show satisfactory performance. The proposed approach is applied to three different microarray data sets. Moreover, we compare the performance of HPSOTS on these datasets to that of stepwise selection, the pure TS and PSO algorithm. It has been demonstrated that the HPSOTS is a useful tool for gene selection and mining high dimension data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of particle swarm optimization and tabu search algorithms for portfolio selection problem

Using Metaheuristics models and Evolutionary Algorithms for solving portfolio problem has been considered in recent years.In this study, by using particles swarm optimization and tabu search algorithms we  optimized two-sided risk measures . A standard exact penalty function transforms the considered portfolio selection problem into an equivalent unconstrained minimization problem. And in final...

متن کامل

Hybrid Binary Imperialist Competition Algorithm and Tabu Search Approach for Feature Selection Using Gene Expression Data

Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informativ...

متن کامل

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

Learning Individualized Facial Expressions in an Avatar with PSO and Tabu Search

This paper describes a method for automatically imitating a particular facial expression in an avatar through a hybrid Particle Swarm Optimization – Tabu Search algorithm. The muscular structures of the facial expressions are measured by Ekman and Friesen’s Facial Action Coding System (FACS). Using a neutral expression as a reference, the minute movements of the Action Units, used in FACS, are ...

متن کامل

Gene selection using hybrid particle swarm optimization and genetic algorithm

Selecting high discriminative genes from gene expression data has become an important research. Not only can this improve the performance of cancer classification, but it can also cut down the cost of medical diagnoses when a large number of noisy, redundant genes are filtered. In this paper, a hybrid Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) method is used for gene selection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational biology and chemistry

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2008